Evaluation of Hidden Semi-Markov Models Training Methods for Greek Emotional Text-to-Speech Synthesis

نویسندگان

  • Alexandros Lazaridis
  • Iosif Mporas
چکیده

This paper describes and evaluates four different HSMM (hidden semi-Markov model) training methods for HMM-based synthesis of emotional speech. The first method, called emotion-dependent modelling, uses individual models trained for each emotion separately. In the second method, emotion adaptation modelling, at first a model is trained using neutral speech, and thereafter adaptation is performed to each emotion of the database. The third method, emotionindependent approach, is based on an average emotion model which is initially trained using data from all the emotions of the speech database. Consequently, an adaptive model is build for each emotion. In the fourth method, emotion adaptive training, the average emotion model is trained with simultaneously normalization of the output and state duration distributions. To evaluate these training methods, a Modern Greek speech database which consists of four categories of speech, anger, fear, joy and sadness, was used. Finally, an emotion recognition rate subjective test was performed in order to measure and compare the ability of each of the four approaches in synthesizing emotional speech. The evaluation results showed that the emotion adaptive training achieved the highest emotion recognition rates among four evaluated methods, throughout all four emotions of the database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HMM-Based Speech Synthesis for the Greek Language

The success and the dominance of Hidden Markov Models (HMM) in the field of speech recognition, tends to extend also in the area of speech synthesis, since HMM provide a generalized statistical framework for efficient parametric speech modeling and generation. In this work, we describe the adaption, the implementation and the evaluation of the HMM speech synthesis framework for the case of the ...

متن کامل

A Perceptual Expressivity Modeling Technique for Speech Synthesis Based on Multiple-Regression HSMM

This paper describes a technique for modeling and controlling emotional expressivity of speech in HMM-based speech synthesis. A problem of conventional emotional speech synthesis based on HMM is that the intensity of an emotional expression appearing in synthetic speech completely depends on the database used for model training. To take into account the emotional expressivity that listeners act...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

A Hidden Semi-Markov Model-Based Speech Synthesis System

Recently, a statistical speech synthesis system based on the hidden Markov model (HMM) has been proposed. In this system, spectrum, excitation, and duration of human speech are modeled simultaneously by context-dependent HMMs and speech parameter vector sequences are generated from the HMMs themselves. This system defines a speech synthesis problem in a generative model framework and solves it ...

متن کامل

Hidden semi-Markov model based speech synthesis

In the present paper, a hidden-semi Markov model (HSMM) based speech synthesis system is proposed. In a hidden Markov model (HMM) based speech synthesis system which we have proposed, rhythm and tempo are controlled by state duration probability distributions modeled by single Gaussian distributions. To synthesis speech, it constructs a sentence HMM corresponding to an arbitralily given text an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013